

An ISO 9001:2015 Company

3-5/6 DIGIT 6000 COUNTS TRMS DIGITAL MULTIMETER WITH VFD, EF-DETECTION

Model KM 235

CAT II 1000V

CAT III 600V

SPECIAL FEATURES :

- VFD V & Hz Function
- EF-Detection (NCV)
- Paper White Backlight Display
- Auto-ranging Relative Zero Mode
- Auto Power Off
- Low Battery Indication
- Display Hold
- Diode & Continuity Test
- Type-K Temperature

GENERAL SPECIFICATIONS:

- * Sensing: TRUE RMS sensing
- * Display: 3-5/6 digits 6000 counts LCD display
- * Update Rate: 5 per second nominal
- $\pmb{*}$ Operating Temperature : -10 $^{\circ}\text{C}$ to 45 $^{\circ}\text{C}$
- * Relative Humidity: Maximum relative humidity 80% for temperature upto 31°C decreasing linearly to 50% relative humidity at 45°C
- * Altitude: Operating Below 2000m.
- * Storage Temperature: -20°C to 60°C, <80% R.H. With battery removed from meter.

- BeepLit Continuity, Features Audible Beep & Visible Backlight Effects
- Beep-Jack Input warning on μAmA/A terminals plug in
- Auto-ranging MAX/MIN/AVG record
- AutoV LoZ Feature. Automatic DC & AC1000V Selection with Low Initial Impedance to drain chost voltages.
- Rugged Fire retarded casing.
- * Pollution Degree: 2
- * Temperature Coefficient: nominal 0.15 x (specified accuracy) /°C @ (0°C~18°C or 28°C~45°C), or otherwise specified.
- Low battery : Below approx. 2.5VPower Consumption : Typical 3.2mA
- * APO Consumption : Typical 10μA
 * APO Timing : Idle for 30 minutes
- * Power Supply: 1.5V AAA battery x 2

* Dimension: 161(L) X 80(W) X 50(H) mm (with Holster)

* Weight: Approx. 334 gm (with Holster)

Magnetic Hanger

SAFETY:

Safety: Double insulation per IEC/UL/EN61010-1 Ed. 3.0, IEC/UL/EN61010-2-030 Ed. 1.0, IEC/UL/EN61010-2-033
 Ed. 1.0, IEC/UL/EN61010-031 Ed. 1.1 & the corresponding CAN/CSA-C22.2 regulations to measurement CAT II 1000V, CAT III 600V and CAT IV 300V AC & DC.

• E. M. C.: Meets EN61326-1:2006

In an RF field of 3V/m:

Ohm function : Total Accuracy = Specified Accuracy + 15 digits Other function ranges : Total Accuracy = Specified Accuracy

Performance above 3V/m is not specified.

- Transient Protection: 6.0kV lightning surge (1.2/50μs)
- Terminals (to COM) Measurement Category :

V/ $mA\mu A$ / A : CAT II 1000 Volts and CAT III 600V and CAT IV 300 Volts AC & DC.

 Overload Protections : $\,\mu A$ & mA $\,: 0.4A$ / 1000V DC/AC rms, IR 30kA, F fuse

A : 11A / 1000V DC/AC rms, IR 20kA, F fuse

V & Auto V: 1100V DC/ACrms mV, Ω & Others : 1000V DC/AC rms

ACCESSORIES: Test leads pair, Carrying Case, Batteries installed, User's Manual, BKP60 banana plug type-K Thermocouple.

OPTIONAL ACCESSORIES: BMH-01Magnetic Hanger, BKB32 banana plug to type-K socket plug adaptor,

Current Clamp CA300, Current Clamp Adaptor CA500, CA1000, CA2000, High Voltage Probe PD-28.

ELECTRICAL SPECIFICATIONS - KM 235

Accuracy is \pm (% reading digits + number of digits) or otherwise specified, at 23°C \pm 5°C

ACV & ACA accuracies are specified from 1% to 100% of range or otherwise specified. Maximum Crest Factor <2:1

at full scale & <4:1 half scale, and with frequency components fall within the meter specified frequency bandwidth for non-sinusoidal waveforms.

DC VOLTAGE

Range		Reso	lution	Accuracy
60.00	mV	10	μV	
600.0	mV	100	μV	
6.000	V	1	mV	±(0.3%rdg + 2dgts)
60.00	V	10	mV	±(0.5 %lug + 2ugis)
600.0	V	100	mV	
1000	V	1	V	

Input Impedance : 10MΩ, 54pF nominal

VFD AC VOLTAGE (with Low Pass Filter)

Range		Resolution			Accuracy ¹⁾
10Hz	440	Hz (fund	ta	I)	
600.0	٧	100 mV			±(2.0%rdg + 3dgts)
1000	٧	1	V		1(2.0 /6/ug + 3ug(s)

¹⁾ Not specified for fundamental frequency >440Hz

All Specifications are subject to change without prior notice.

ELECTRICAL SPECIFICATIONS - KM 235

AC VOLTAGE

Range	Resolution	Accuracy	
50Hz 60	Hz	•	
6.000 V	1 mV		
60.00 V	10 mV	±(0.7%rdg + 3dgts)	
600.0 V	100 mV	1 (0.7 /61dg + 3dgts)	
1000 V	1 V		
45Hz 44	0Hz		
6.000 V	1 mV		
60.00 V	10 mV		
600.0 V	100 mV	±(2.0%rdg + 3dgts)	
1000 V	1 V		
10Hz 50	0Hz		
60.00 mV	10 μV	±(1.0%rdg + 3dgts)	
600.0 mV	100 μV	1 (1.0 % dy + 3dyls)	
500Hz 8	00Hz		
60.00 mV	10 μV	±(2.0%rdg + 3dgts)	
600.0 mV	100 μV	±(2.0 /01 dg + 0 dg(3)	

Input Impedance : $10M\Omega$, 54pF nominal

LINE FREQUENCY

Function		Sensitivity (Sine RMS)		Range
60	mV	50	mV	10Hz - 50kHz
600	mV	50	mV	10Hz - 50kHz
6	V	3	V	10Hz - 50kHz
60	V	5	V	10Hz - 50kHz
600	V	50	V	10Hz - 1kHz
1000	V	500	V	10Hz - 1kHz
VFD 6	00 V	50	V	10Hz - 1kHz
VFD 1	000V	500	V	10Hz - 1kHz
600	μΑ	500	μΑ	10Hz - 5kHz
6000	μΑ	500	μΑ	10Hz - 5kHz
60	mA	50	mA	10Hz - 5kHz
600	mA	50	mA	10Hz - 5kHz
6	Α	8	Α	50Hz - 1kHz
10	Α	8	Α	50Hz - 1kHz

Accuracy: 0.03%+2d

онмѕ

Range ¹⁾	Resolution	Accuracy
600.0 Ω	100 mΩ	±(0.3%rdg + 3dgts)
6.000 kΩ	1 Ω	1 ±(0.5 / mag + 5ag(s)
60.00 kΩ	10 Ω	±(0.5%rdg + 3dgts)
600.0 kΩ	100 Ω	1 ±(0.5 %ldg + 5dgls)
6.000 $M\Omega^{2)}$	1 kΩ	±(0.9%rdg + 2dgts) ⁴⁾
60.00 MΩ ³⁾	10 kΩ	±(0.9%)dg + 2dg(s)

¹⁾ Open Circuit Voltage: 1.6VDC typical. ²⁾ Constant Test Current: 0.2μA Typical ³⁾ Constant Test Current: 0.02μA Typical

TEMPERATURE

Range	Accuracy	
-40.0°C ~ 99.9°C	± (1% + 1.0°C)	
100.0°C ~ 400°C	1 (170 - 1.0 0)	
-40.0°F ~ 99.9°F	± (1% + 2°F)	
100°F ~ 752°F	1(1/0+21)	

Type-K thermocouple range & accuracy not included.

DC CURRENT

Range	Resolution	Accuracy	Burden Voltage
600.0 μΑ	100 nA	±(1.0%rdg + 3dgts)	0.1 mV / μA
6000 μΑ	1 μΑ	11(1.0 %lug + 3ugis)	0.1 mV / μA
60.00 mA	10 μΑ		1.9 mV/mA
600.0 mA	100 μΑ	±(0.7%rdg + 3dgts)	1.9 mV/mA
6.000 A	1 mA	1±(0.7 /610g + 30g(s)	0.04 V/A
10.00 A ¹⁾	10 mA		0.04 V/A

^{1) 10}A continuous, >10A to 20A for 30 Sec. Max with 5 minutes cool down interval

AC CURRENT

Range	Resolution	Accuracy	Burden Voltage
50Hz 40	0Hz		
600.0 μΑ	100 nA	±(1.5%rdg + 3dgts)	0.1 mV / μA
6000 μΑ	1 μΑ	1±(1.5 %) ug + 5ug(s)	0.1 mV / μA
60.00 mA	10 μΑ		1.9 mV/mA
600.0 mA	100 μΑ	±(1.0%rdg + 3dgts)	1.9 mV/mA
6.000 A	1 mA	1±(1.0 /614g + 34gts)	0.04 V/A
10.00 A ¹⁾	10 mA		0.04 V/A

^{1) 10}A continuous, >10A to 20A for 30 Sec. Max with 5 minutes cool down interval

BEEPLIT CONTINUITY TESTER

Continuity Threshold :	Between 30Ω and 480Ω	
Response time :	64ms	
Latch time :	128ms	
Audible Response :	Beep sound	
Visible Response :	LCD Backlight	

DIODE TESTER

Range	Resolution	Accuracy
3.000 V	100mV	±(0.9%rdg + 2dgts)

Test Current: 0.3mA typical.
Open Circuit Voltage: <3.2VDC typical.

AutoV_DC Voltage

Range		Range Resolution		Accuracy ¹⁾
45Hz	~ 44	0Hz		
600.0	٧	100) mV	±(2.0%rdg + 3dgts)
1000	٧	1	V	1(2.0 %lug + 3ugis)

¹⁾ Not specified at <1VAC

Threshold: > +1.0VDC or < -1.0VDC nominal **Input Impedance:**

Initially approx. $2.1k\Omega$, 164pF nominal; Impedance increases abruptly within a fraction of a second as display voltage is above 50V (typical). Ended up impedances vs display voltages typically are:

12kΩ @100V 100kΩ @300V 240kΩ @600V 580kΩ @1000V

AutoV_AC Voltage

Rang	je	Resolution		Accuracy ¹⁾
45Hz -	~ 44	0Hz		
600.0	V	100 mV		±(2.0%rdg + 3dgts)
1000	V	1	V	1(2.0 %ldg + 3dgls)

1) Not specified at <1VAC

Threshold: > 1VAC nominal

Input Impedance:

Initially approx. 2.1k Ω , 164pF nominal; Impedance increases abruptly within a fraction of a second as display voltage is above 50V (typical). Ended up impedances vs display voltages typically are:

 $\begin{array}{lll} 12k\Omega & @100V \\ 100k\Omega & @300V \\ 240k\Omega & @600V \\ 580k\Omega & @1000V \end{array}$

CAPACITANCE

Range	Resolution	Accuracy	
20.00 nF	10 pF	±(1.5%rdg + 8dgts)	
200.0 nF	100 pF	±(1.5%)ug + ougis)	
2000 nF	1 nF	±(1.5%rdg + 2dgts)	
20.00 μF	10 nF		
200.0 μF	100 nF		
2000 μF	1 μF		
10.00 mF	10 μF	±(4.5%rdg + 10dgts)	

Accuracies with film capacitor or better

All Specifications are subject to change without prior notice.

G-17, Bharat Industrial Estate, T. J. Road, Sewree (W), Mumbai - 400 015. INDIA. **Tel.**: 022-24156638, 27754546, 24124540, 24181649, 27750662, 27750292

Email: sales@kusam-meco.co.in Website: www.kusamelectrical.com

 $^{^{4)}5\%}$ + 20d @ > 30M Ω .

USE TRUE RMS WHEN MEASURING AC WAVEFORMS

The waveforms on today's AC power lines are anything but clean. Electronic equipment such as office computers, with their switching power supplies, produce harmonics that distort power-line waveforms. These distortions make measuring AC voltage inaccurate when you use an averaging DMM.

Average voltage measurements work fine when the signal you're measuring is a pure sine wave, but errors mount as the waveform distorts. By using true RMS measurements, however, you can measure the equivalent heating effect that a voltage produces, including the heating effects of harmonics. Table 1 shows the difference between measurements taken on averaging DMMs & those taken on true RMS DMMs. In each case, the measured signal's peak-to-peak value is 2V. Therefore, the peak value is 1V.

For a 1-V peak sine wave, the average & RMS values are both 0.707V. But when the input signal is no longer a sine wave, differences between the RMS values & the average readig values occur. Those errors are most prominent when you are measuring square waves & pulse waveforms, which are rich in harmonics.

Table 1. Average versus true RMS comparison of typical waveforms.

Waveform	Actual Pk-Pk	True RMS Reading	Average Reading	Reading Error
Sine Wave	2.000	0.707	0.707	0%
Triangle Wave	2.000	0.577	0.555	-3.8%
Square Wave	2.000	1.000	1.111	+11.1%
Pulse (25% duty Cycle)	2.000	0.433	0.416	-3.8%
Pulse (12.5% duty Cycle)	2.000	0.331	0.243	-26.5%
Pulse (6.25% duty Cycle)	2.000	0.242	0.130	-46.2%

One limitation to making true RMS measurements is crest factor, and you should consider crest factor when making AC measurements. Crest factor is the ratio of a waveform's peak ("crest") voltage to its RMS voltage. Table 2 shows the crest factors for ideal waveforms.

Table 2. Crest factors of typical waveforms.				
Waveform	Crest Factor			
DC	1.000			
Square Wave	1.000			
Sine Wave	1.414			
Triangle Wave	1.732			
Pulse (25% duty Cycle)	1.732			
Pulse (12.5% duty Cycle)	2.646			
Pulse (6.25% duty Cycle)	3.873			

A DMM's specifications should tell you the maximum crest factor that the meter can handle while maintaining its measurement accuracy. True RMS meters can handle higher crest factors when a waveform's RMS voltage is in the middle of the meter's range setting. Typically, a DMM may tolerate a crest factor of 3 near the top of its scale but it might handle a crest factor of 5 that's in the middle of the range. Therefore, if you're measuring waveforms with high crest factors (greater than 3), you should adjust the DMM so the measured voltage is closest to the center of the measurement range.

Another limitation of true RMS is speed. If you're measuring relatively clean sine waves, then you can save time & money by using as averaging DMM. True RMS meters cost more than averaging meters and can take longer to produce measurements, especially when measuring millivolt-level AC signals. At those low levels, true RMS meters can take several seconds to stabilize a reading. Averaging meters won't leave you waiting.